Banca de DEFESA: RUAN BARBOSA FERNANDES

Uma banca de DEFESA de MESTRADO foi cadastrada pelo programa.
DISCENTE : RUAN BARBOSA FERNANDES
DATA : 03/05/2020
HORA: 11:00
LOCAL: ambiente virtual
TÍTULO:

Automorfismos da categoria de grupos livres finitamente gerados de uma subvariedade da variedade de todos os grupos


PALAVRAS-CHAVES:

Geometria algébrica universal, teoria de categorias, equivalência automórfica, grupos nilpotentes, grupos periódicos.


PÁGINAS: 68
RESUMO:

Em geometria algébrica universal, a categoria das álgebras livres finitamente geradas de alguma variedade fixa  de álgebras e o grupo quociente A/Y são muito importantes. Aqui A é o grupo de todos os automorfismos da categoria  e Y é o grupo de todos os automorfismos internos de. Na variedade de todos os grupos, todos os grupos abelianos (PLOTKIN; ZHITOMIRSKI, 2006), todos os grupos nilpotentes de classe n (n >1) (TSURKOV, 2007) o grupo A/Y é trivial. B. Plotkin propôs a seguinte pergunta: "Existe uma subvariedade da variedade de todos os grupos tal que o grupo A/Y nessa subvariedade não seja trivial?" A. Tsurkov supôs que existe alguma variedade de grupos periódicos, tal que o grupo A/Y nessa variedade não é trivial. Neste trabalho, nós damos um exemplo de uma subvariedade deste tipo.


MEMBROS DA BANCA:
Externo à Instituição - EVGENY PLOTKIN - Bar-Ilan
Interno - 2340150 - ALEXEY KUZMIN
Presidente - 2147844 - ARKADY TSURKOV
Interna - 2425364 - ELENA ALADOVA
Notícia cadastrada em: 23/04/2020 14:16
SIGAA | Superintendência de Informática - | | Copyright © 2006-2020 - UFRN - sigaa01-producao.info.ufrn.br.sigaa01-producao