Equivalência Geométrica e Equivalência Geométrica de Tipo de Ação de Representações de Grupos
Equivalência geométrica, Representações de grupos, Equivalência geométrica de tipo de ação.
No presente trabalho, veremos a definição de equivalência geométrica entre álgebras universais (e especialmente, para grupos), a então aplicar esse conceito a elementos na variedade de todas as representações de grupos sobre um corpo fixo. Nesse espaço, consideramos pares de conjuntos de equações em representações livres (XKF(Y ); F(Y )), onde X e Y são finitos. Depois, veremos outro tipo de equivalência geométrica: a equivalência geométrica de tipo de ação, cuja definição é muito similar à usual, mas nesse caso consideramos apenas subconjuntos XKF(Y ) na representação livre (XKF(Y ); F(Y )), para X e Y - finitos. Aqui, temos dois objetivos principais: o primeiro é estudar os diferentes casos de equivalência geométrica e o segundo é mostrar um exemplo que prova que não podemos concluir a equivalência geométrica entre duas representações a partir de sua equivalência geométrica de tipo de ação e a equivalência geométrica de seus grupos.