Bidualização de Espaços Afim
espaço afim. dual afim. bidual afim
Principais ideias sobre o espaço afim são apresentadas. Seja A um espaço afim modelado em um espaço vetorial V, e seja A†= Aff (A,IR) o dual estendido de A, isto é, o espaço vetorial de todos as aplicações afins de A para a reta real. Sabe-se que no caso de um espaço vetorial V, o bidual V** é canonicamente isomorfo a V. Consideramos o bidual vetorial (A†)* de A e mostramos como o espaço afim A esta imerso no seu bidual vetorial.