Banca de DEFESA: ÉRICK STÉFANO SILVEIRA GUERRA

Uma banca de DEFESA de DOUTORADO foi cadastrada pelo programa.
STUDENT : ÉRICK STÉFANO SILVEIRA GUERRA
DATE: 01/12/2022
TIME: 09:00
LOCAL: Plataforma de Videoconferência
TITLE:

Microscale evaluation of epoxy matrix composites containing thermoplastic healing agent.


KEY WORDS:

Epoxy matrix composites, Interfacial strength, Fiber-matrix bond, Self-healing.


PAGES: 60
BIG AREA: Engenharias
AREA: Engenharia de Materiais e Metalúrgica
SUBÁREA: Materiais Não-Metálicos
SPECIALTY: Polímeros, Aplicações
SUMMARY:

Epoxy matrix composites are often subjected to adverse service conditions leading to the formation of microcracks. Microcracks are of great concern because they can act as nucleation sites for more prejudicial types of damage, such as delamination. Among the solutions to mitigate the deleterious effect of matrix microcracking is the use of thermoplastic healing agents. Poly(ethylene-co-methacrylic acid) (EMAA) has been particularly used as a thermoplastic healing agent because of its suitable chemical and physical properties. When the material is heated, the thermoplastic phase dispersed in the epoxy matrix is allowed to flow into microcracks and restore mechanical properties. The addition of EMAA particles, however, may cause alterations in chemical and thermomechanical properties of epoxy composites. These changes may also affect other fundamental features of epoxy composites, such as their fiber-matrix interfacial properties. The objectives of this work are, therefore, (1) study the effects of EMAA addition on epoxy formation, (2) investigate the effect of EMAA addition on fiber-matrix interfacial properties, and (3) study the potential for self-healing through micromechanical testing. The effect of a 10 wt.% EMAA modified epoxy was investigated through infrared spectroscopy and differential scanning calorimetry (DSC) experiments. The results suggested that EMAA addition may cause changes during the epoxy network formation. Following that, single fiber pull-out tests were used to characterize the fiber interfacial shear strength (IFSS) of pure and modified epoxy systems, as well as between fiber and pure EMAA. IFSS results of pure and modified epoxy were quite similar, revealing that epoxy modification did not alter significantly fiber-matrix interfacial properties. On the other hand, IFSS measurements of fiber-EMAA presented considerably lower values than fiber-epoxy, suggesting that healing is most likely held by fiber-epoxy or EMAA-epoxy interactions. A novel method to assess the healing efficiency (η) using optically monitored single fiber pull-out testing was proposed. According to the results, healing efficiency of EMAA modified epoxy was lower than that of pure epoxy systems. The attenuated matrix shrinkage effect due to the addition of rubbery EMAA particles, along with the lower IFSS results of EMAA-fiber are proposed to explain the observed low η values. Complementary tests investigated thermomechanical properties and the cure of the EMAA modified epoxy, along with the effect of healing on the chemical structure and its IFSS properties. 


COMMITTEE MEMBERS:
Interna - 2042234 - ANA PAULA CYSNE BARBOSA
Interno - 1202134 - JOSE DANIEL DINIZ MELO
Externo à Instituição - GERHARD KALINKA - BAM
Externa à Instituição - LAURA HECKER DE CARVALHO - UFCG
Externo à Instituição - PEDRO DOLABELLA PORTELLA - BAM
Notícia cadastrada em: 19/11/2022 07:56
SIGAA | Superintendência de Tecnologia da Informação - (84) 3342 2210 | Copyright © 2006-2024 - UFRN - sigaa06-producao.info.ufrn.br.sigaa06-producao