PPgSC/UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO ADMINISTRAÇÃO DO CCET Téléphone/Extension: (84)3342-2225/115 https://posgraduacao.ufrn.br/ppgsc

Banca de QUALIFICAÇÃO: IASLAN DO NASCIMENTO PAULO DA SILVA

Uma banca de QUALIFICAÇÃO de MESTRADO foi cadastrada pelo programa.
STUDENT : IASLAN DO NASCIMENTO PAULO DA SILVA
DATE: 10/06/2020
TIME: 14:00
LOCAL: Videoconferência
TITLE:

A Microservice Architecture for Processing Relevant Imagery in Digital Crime Evidences


KEY WORDS:

Computer Vision, Digital forensics, Crime evidence, Machine Learning, Architecture.


PAGES: 49
BIG AREA: Ciências Exatas e da Terra
AREA: Ciência da Computação
SUBÁREA: Metodologia e Técnicas da Computação
SPECIALTY: Processamento Gráfico (Graphics)
SUMMARY:

Digital computer forensics is a branch of computer science that uses computational techniques to analyze criminals with greater speed and accuracy. In the context of the Brazilian justice system, during a criminal investigation, experts in extra crimes decode and analyze it as collected to allow the public prosecutor to make legal use of legalities. These specialists have a very short time and this analysis to find criminals can take a long time. To solve this problem, this work can be used ARTEMIS (A microservice architecture for images in scientific evidence or Microservice architecture for images in criminal evidence), an architecture for classifying large results of customized image files in open-source software. The image classification module contains some pre-trained classifiers, considering the need for forensic analysts from the MPRN (Public Ministry of Rio Grande do Norte). Models were built to identify four types of objects: firearms, ammunition, Brazilian identity cards, text documents, cellphone text, and prints. The results displayed show that the system selected good accuracy in most cases. This is extremely important in the context of this research, where positive factors must be avoided, an end to the analysts' saving of working time.


BANKING MEMBERS:
Presidente - 2177445 - BRUNO MOTTA DE CARVALHO
Externo ao Programa - 1669545 - DANIEL SABINO AMORIM DE ARAUJO
Externo ao Programa - 2510306 - FREDERICO ARAUJO DA SILVA LOPES
Externo ao Programa - 2929823 - RAFAEL BESERRA GOMES
Notícia cadastrada em: 18/06/2020 10:28
SIGAA | Superintendência de Tecnologia da Informação - (84) 3342 2210 | Copyright © 2006-2024 - UFRN - sigaa13-producao.info.ufrn.br.sigaa13-producao