Microstructural evaluation of graphene effects on carbide-based coatings for petroleum applications
Graphene, HVOF, Thermal Spray, hard metal, coating.
The addition of graphene in alloys has become an object of interest in the research and development of coatings, as this material tends to improve properties such as wear and corrosion resistance of the material, thus increasing the useful life of assets in the oil and gas industries. gas, automotive, mining, among others. In this study, graphene oxide was synthesized and mixed with tungsten carbide - 12% cobalt for formulations of four compositions with different percentages by weight of graphene oxide (0; 0.5; 0.75; 1). 1020 steel plates were sprinkled through thermal spray - HVOF with each composition. Compositions and coatings were characterized through XRD, SEM-FEG, Raman, bending test, and Vickers microhardness. The results show that there was no phase change of graphene oxide after thermal spray. The coating with 0.5% graphene obtained higher hardness values than the other compositions, thus proving that graphene improves the mechanical properties of the coating. However, the compositions with higher graphene contents showed embrittlement, therefore, the coating began to show defects in its microstructure with a greater amount of graphene in the composition.