MICROSTRUCTURAL EVALUATION OF PARTIALLY MIXED ZONES (PMZ) OBTAINED BY DISSIMILAR WELDING USING ALLOY INCONEL 625 FILLER METALS AND 309L STAINLESS STEELFILLER METAL
Cladding, GMAW, microstructural characterization and microhardness.
In order to investigate the influence on Partially Mixed Zones (PMZ), of the heat input and the filler metals employed, the present work is predicted for the metallurgical profile of interfacial regions, using alloy Inconel 625 filler metals and 309L stainless steel filler metal, both deposited by the GMAW process on low carbon steel. However, for cladding to achieve its intended purpose, during the cladding process with low dilution, the choice of cladding with high dilution should be ensured to evaluate this parameter at the interface of the substrate with the cladding. Therefore, changes in the welding speed, to obtain claddings with different metallurgical characteristics, to influence the substrate / cladding interaction and to obtain several percentages of dilution. The welds were deposited on specimens of 200 x 100 x 10 mm, forming test pieces with one cladding layer, formed by three weld beads. For each filler metal used, two heat input of welding were imposed, 1500 J / mm and 550 J / mm. From these specimens were removed for analysis of the metallography, followed by analysis by optical microscopy, scanning electron microscopy with field emission gun and microhardness test. The results are a direct indication between the PMZ thicknesses and the filler metals employed, so that claddings using 309L stainless steel presented thicker PMZ when compared to PMZ cladding produced with Inconel 625. For both filler metals, higher welding speed contributed to higher dilution percentages, because of a smaller reinforcement area formed in the in the cladding. Another important result was evidenced by microhardness analysis, where it was possible to observe a considerable increase in the hardness values in the interfacial region, more precisely in the Partially Mixed Zones (PMZ) and in the Heat-Affected Zones (HAZ) closest to the fusion line.