ANÁLISES ESTATÍSTICAS DO MÉTODO COMPRESSIVE SENSING APLICADOS A DADOS SÍSMICOS
Reconstrução de Dados Sísmicos, Bayesian Compressive Sensing (BCS), $\ell_1$-MAGIC, StOMP, Wavelets, Curtose, Entropia, Esparsidade
O Compressive Sensing (CS) é uma técnica de processamento de dados eficiente na recuperação e construção de sinais a partir de uma taxa de amostragem menor que a requerida pelo teorema de Shannon-Nyquist. Esta técnica permite uma grande redução de dados para sinais que podem ser esparsamente representados. A Transformada Wavelet tem sido utilizada para comprimir e representar muitos sinais naturais, incluindo sísmicos, de uma forma esparsa. Há diversos algoritmos de reconstrução de sinais que utilizam a técnica de CS, como por exemplo: o $\ell_1$-MAGIC, o Fast Bayesian Compressive Sensing (Fast BCS) e o Stagewise Orthogonal Matching Pursuit (StOMP). Esta tese compara a recuperação de traços sísmicos sob uma perspectiva estatística usando diferentes métodos do CS, transformadas wavelets e taxas de amostragens. Mediu-se a correlação entre o Erro Relativo (ER) de recuperação pelo CS e as medições: coeficiente de variação, assimetria, curtose e entropia do sinal original. Parece haver uma correlação entre a curtose e entropia do sinal com o ER de reconstrução pelo CS. Ademais, foi analizado a distribuição do ER no CS. O $\ell_1$-MAGIC teve melhores resultados para taxas de amostragens até 40%. Além disso, a distribuição do ER no $\ell_1$-MAGIC teve mais histogramas normais, simétricos e mesocúrticos que no Fast BCS. Entretanto, para taxas de amostragem acima de 50%, o Fast BCS mostrou um melhor desempenho em relação à média do ER.