Desenvolvimento e uso do CORAZON, ferramenta para normalização e agrupamento de dados genômicos, na análise funcional e evolutiva de transcritos.
Expressão gênica. Aprendizagem de máquina. Agrupamento. CORAZON.
A criação de enciclopédias de expressão gênica possibilita a compreensão de grupos de genes que são co-expressos em diferentes tecidos e o entendimento de grupos gênicos conforme suas funções e origem. Devido à enorme quantidade de dados em larga escala, gerados em projetos de transcriptômica, houve uma demanda intensa em usar técnicas fornecidas pela inteligência artificial, que tornou-se amplamente utilizada na bioinformática. A aprendizagem não supervisionada é a tarefa de aprendizagem de máquina que analisa os dados fornecidos e determina os objetos que podem ser agrupados. Foi construída uma ferramenta amigável chamada CORAZON (Correlation Analyses Zipper Online), que implementa 3 algoritmos de aprendizagem de máquina não supervisionada (mean shift, k-means e hierárquico), 6 metodologias de normalização (Fragments Per Kilobase Million (FPKM), Transcripts Per Million (TPM), Counts Per Million (CPM), log base-2, normalização pela soma dos valores da instância e normalização pelo maior valor de atributo para cada instância) e uma estratégia para observar a influência dos atributos, para agrupamento de dados de expressão gênica. Os desempenhos dos algoritmos foram avaliados através de 5 modelos comumente usados para validar metodologias de agrupamento, cada um composto por 50 conjuntos de dados gerados aleatoriamente. Os algoritmos apresentaram acurácia variando entre 92-100%. Em seguida, a ferramenta foi aplicada para agrupar tecidos, obter conhecimentos evolutivos e funcionais dos genes, com base no enriquecimento de processos biológicos, e associar com fatores de transcrição. Para selecionar o melhor número de clusters para o k-means e o hierárquico, foram utilizados o critério de informação bayesiana (BIC), seguido da derivada da função discreta e a Silhueta. No hierárquico foi adotado o método do Ward. No total, 3 bases de dados (Uhlen, Encode e Fantom) foram analisadas e, em relação aos tecidos, foram observados grupos relacionados a glândulas, tecidos cardíacos, musculares, relacionados ao sistema reprodutivo e grupos com um único tecido, como testículo, cérebro e medula óssea. Em relação aos grupos de genes, foram obtidos vários grupos com especificidades em suas funções: detecção de estímulos envolvidos na percepção sensorial, reprodução, sinalização sináptica, sistema nervoso, sistema imunológico, desenvolvimento de sistemas e metabólicos. Também foi observado que geralmente grupos com mais de 80% de genes não codificantes, mais de 40% dos seus genes codificantes são recentes, originados em Mammalia e a minoria é do clado Eukaryota. Por outro lado, grupos com mais de 90% de genes codificantes, mais de 40% deles apareceram em Eukaryota e a minoria em Mammalia. Estes resultados mostram o potencial dos métodos do CORAZON, que podem ajudar na análise de grande quantidade de dados genômicos, possibilitando associações dos processos biológicos com RNAs não codificantes e codificantes agrupados juntos, bem como a possibilidade do estudo da história evolutiva. CORAZON está disponível gratuitamente em http://biodados.icb.ufmg.br/corazon ou http://corazon.integrativebioinformatics.me.