Ablation of deep-layer neurons affects the specification of upper-layers in the developing cerebral cortex.
Neuronal specification, cerebral cortex, genetically-induced cell death, neurogenesis, development.
The cerebral cortex of mammals is histologically organized into in different layers of excitatory neurons that have distinct patterns of connections with cortical or subcortical targets. During development, these cortical layers are sequentially established through an intricate combination of neuronal specification and migration in a radial pattern known as "inside-out": deep-layer neurons are generated prior to upper-layer neurons. In the last few decades, several genes encoding transcription factors involved in the specification of neurons destined to different cortical layers have been identified. However, the influence of early-generated neurons in to the specification of subsequent neuronal cohorts remains unclear.
To investigate the possible effects early born neurons ablation on the specification of late born neurons, we induced the selective death of cortical neurons from layers V and VI neurons before the generation of neurons destined to layers II, III and IV. Our data shows that one-day after ablation, progenitors resumed generation of layer VI neurons expressing the transcription factor TBR1, whereas virtually no TBR1-expressing neuron was generated at the same developmental stage in age-matched controls. Interestingly, many TBR1-positive neurons generated after deep-layer ablation settled within superficial cortical layers, as expected for upper-layer neurons generated at that stage, suggesting that migration post-mitotic neurons is independent of fate-specification. Furthermore, we observed an increase in layer V neurons expressing CTIP2 and cortico-cortical neurons expressing SATB2 at the expense of layer IV neurons. Together, our data indicate the existence of feedback mechanism either from early-generated neurons to progenitors involved in the generation of upper-layer neurons or from deep-layer neurons to postmitotic neurons generated subsequently. This mechanism could help to control the number of neurons in different layers and contribute to the establishment of different cortical areas.