USING ASTROCYTES AS DISEASE-MODIFYING TREATMENT FOR TEMPORAL LOBE EPILEPSY
temporal lobe epilepsy, behavioral seizures, cellular therapy, astrocytes, interictal epileptiform spikes
Astrocytes are specialized glial cells involved in the extracellular homeostasis by buffering potassium cation (K+) concentration, metabolizing neurotransmitters, controlling neuronal firing and synchronization and contributing to the blood-brain barrier. Under pathological conditions, astrocytes may change their morphology in order to compensate abnormal function, being referred to as activated astrocytes (reactive gliosis). This phenomenon is commonly observed in brain regions associated with seizure generation and spread, although its role in abnormal synchronization is unknown. While astrocytes can enhance potassium and glutamate-related metabolism, sustained long-term reactivation can lead to neuronal dysfunction. Temporal lobe epilepsy (TLE) is the most common form of epilepsy and is usually associated to refractoriness. TLE is characterized by extensive cell death (hippocampal sclerosis), synaptic reorganization (mossy fiber sprouting) and reactive gliosis. Here, we hypothesize that transplantation of immature astrocytes in chronically epileptic hippocampus would reduce epileptiform activity, including the occurrence of electrographic and behavioral seizures. To test this hypothesis, animals made epileptic by the systemic injection of pilocarpine (which induced status epilepticus, SE) were unilaterally transplanted with green fluorescent protein-positive (GFP) astrocytes into the hippocampus 30 days after the SE. Group assignment (SE-Saline e SE-Astro GD) was made according to SE behavioral severity and spontaneous epileptiform activities (interictal spikes, high-frequency oscillations, seizures) were recorded in both (treated and untreated) hippocampi using chronically implanted multi-electrodes. Astrocytes had migrated approximately 1500µm injection site, and survival rate was 0.8% (±0.21). Astrocytes were found in the host hippocampus seven months after transplantation and were mainly localized at the hilus, at the granular layer of the dentate gyrus, at molecular layer of hippocampus and fimbria/fornix. Cells or tissue clusters indicative of tumor were not identified. In a second group, astrocytes were found in the cortex and constituted the SE-Astro Cortex group. No difference was found in epileptiform activity recorded between groups. Epileptiform electrographic activity was recorded in 80% of control animals (SE-Saline, N= 8/10, in 80% of SE-Astro Cortex group (SE-Astro Córtex, N=4/5) and in 60% of animals that received astrocytes into the hippocampus (SE-Astro GD, N=2/5). Spontaneous seizure occurrence was variable between animals (21 vs 12 vs 1 recorded seizures in SE-Saline and SE-Astro Cortex and SE-Astro GD groups, respectively), however, no difference was observed in seizure frequency between groups (seizures/hour: 0.05±0.01 vs 0.03±0.003 vs 0.02, SE-Saline, SE-Astro Cortex and SE-Astro GD, respectively). Astrocytes grafting did not change seizure duration (67.5 ± 3.6 s vs 74.2 ± 3.9 s vs 65.3 s for SE-Saline, SE-Astro Cortex and SE-Astro GD groups, respectively). Also, we did not observe any difference in the morphology, periodicity or frequency of hippocampal interictal spikes between experimental groups and/or treated hemisphere. Additionally, however, the animals of SE-Astro Cortex group showed reduced behavioral seizure severity (scores: 5 ± 0.1 vs 4 ± 0.4; for SE-Saline and SE-Astro Cortex, respectively; p =0.02, Mann-Whitney test). SE-Astro GD group animals showed only one spontaneous seizure with severity 6. Even thought the small sample size, our results present the cell therapy relevance for the treatment of epilepsies and reinforce importance of transplantation site for epileptiform activity reduction.