Banca de DEFESA: TÂNIA EVYLLYN DIAS DA SILVA

Uma banca de DEFESA de MESTRADO foi cadastrada pelo programa.
STUDENT : TÂNIA EVYLLYN DIAS DA SILVA
DATE: 31/03/2023
TIME: 14:00
LOCAL: meet.google.com/djc-fpeo-nvu
TITLE:

DEVELOPMENT OF RECYCLED PET/WOVEN PET BLEND FOR TEXTILE APPLICATIONS


KEY WORDS:

Recycled poly(ethylene terephthalate); polyester fabrics; EMA-GMA; titanium dioxide; extrusion


PAGES: 70
BIG AREA: Engenharias
AREA: Engenharia Química
SUBÁREA: Tecnologia Química
SPECIALTY: Têxteis
SUMMARY:

Plastic consumption has generated some environmental problems such as contamination of the environment. Plastic waste resulting from inappropriate disposal, due to its characteristics, mainly due to its form factor, has led to an increase in the mortality of life in rivers and seas. In light of these problems, it is necessary to develop actions that reduce these impacts, such as the recycling of these materials and the use of circular economy, which exposes a concern regarding the life cycle of products and their applications. The work aimed to develop a filament applicable in the textile industry, resulting from the combination of recycled poly(ethylene terephthalate) (PETR) from bottle grade and woven PET (PETT) from the clothing industry. The PETR/PETT binary blend with and without the use of ethylene-methyl acrylate-glycidyl methacrylate copolymer (EMA-GMA) as a chain-extending agent was plasticized and homogenized in a twin screw extruder with d = 16 mm and l/d = 40, varying the compositions in 10 wt% of PETT in PETR until the composition fo 100 wt% of PETT and, using 3 wt% of EMA-GMA in the formulations of these mixtures. After the production of polymeric mixtures, rheological characterizations were carried out by melt flow index (MFI) measurements, thermal characterization by differential scanning calorimetry (DSC), physicochemical characterization by X-ray fluorescence (FRX), mechanical characterization by uniaxial tensile and, morphological characterization by scanning electron microscopy (SEM). Previous work showed that the EMA-GMA copolymer showed evidences of reaction with PET and the results of the characterizations in this work corroborated the results obtained previously. The MFI and tensile test results corroborated the optimization and definition of the best compositions to be processed in the single screw extruder with d = 16 mm and l/d = 26, aiming at the production of continuous filaments. Through the MFI evaluated the fluidity as a function of temperature and the flow stability of the polymeric mixtures and, the results of tensile strength, elongation at break and modulus of elasticity showed the materials that presented the best results to be selected and used in the production of textile filaments. FRX analysis performed on PETT identified the presence of titanium dioxide (TiO2), which is used as a white pigment in clothes. The photomicrographs obtained by SEM showed phase separation between the two types of PET, recycled bottle grade and woven. The pure polymers were processed under the same conditions, having the same thermal history and were used as a reference for the final quality of the filaments produced from the polymeric mixtures. The results of the characterizations showed that the mixtures with 60, 70 and 90 wt% of PETT were the materials that presented the best results to be applied in the manufacture of textile filaments and, finally, measurements of the titration and measurements of the thickness of these textile filaments by SEM were carried out.


COMMITTEE MEMBERS:
Presidente - 1639676 - EDSON NORIYUKI ITO
Interna - 2614285 - KESIA KARINA DE OLIVEIRA SOUTO SILVA
Externa ao Programa - 1150673 - IRIS OLIVEIRA DA SILVA - UFRNExterno à Instituição - JOSÉ KAIO MAX ALVES DO RÊGO - UFS
Notícia cadastrada em: 20/03/2023 15:21
SIGAA | Superintendência de Tecnologia da Informação - (84) 3342 2210 | Copyright © 2006-2024 - UFRN - sigaa14-producao.info.ufrn.br.sigaa14-producao