Síntese de Superfícies Seletivas de Frequência através de Técnicas de Computação Natural
Algoritmos Genéticos, Redes Neurais Artificiais, Superfícies Seletivas de Frequência, Otimização, Computação Natural.
As superfícies seletivas de frequência (FSS) têm sido objeto de intensa pesquisa nas duas últimas décadas, sendo utilizadas em diversas aplicações que vão desde sistemas de micro-ondas e antenas até aplicações em radomes e comunicações via satélite. Uma superfície seletiva de freqüência é um arranjo periódico que se constitui de elementos tipo patch ou abertura, ou mesmo por uma combinação de ambos, e exibe reflexão ou transmissão total na freqüência ressonante, se comportando dessa maneira como um filtro rejeita-faixa ou passa-faixa. Neste trabalho é realizada uma investigação numérica e experimental, consistindo do projeto, simulação computacional, construção e medição de estruturas de FSS. Esta FSS é estudada experimentalmente e suas características eletromagnéticas são medidas e simuladas através de programas de computador, equipamentos e técnicas de otimização. Estas estruturas são bastante complexas requerendo uma análise por técnicas de onda completa, como o método das diferenças finitas no domínio do tempo ou método dos elementos finitos. Para superar os custos computacionais e de tempo das técnicas de onda completa, podem ser utilizadas como alternativa as técnicas de computação natural. Algumas características como robustez, generalização, adaptabilidade e rápida convergência contribuem para o aumento significativo do emprego destas técnicas em aplicações na área de comunicações moveis. A modelagem das FSS citadas é realizada com redes neurais artificiais de múltiplas camadas, com o algoritmo de Levenberg-Marquardt para aprendizagem e treinamento. Os modelos neurocomputacionais desenvolvidos para as FSS proveem excelentes resultados e em concordância com valores obtidos através de medições em laboratório. A necessidade de estruturas com comportamento eletromagnético adequado em dispositivos de micro-ondas tem sido bastante estudada pelos pesquisadores da área. Essas estruturas requerem, em sua análise de características espectrais, técnicas rigorosas e elevada complexidade computacional em sua implementação. O objetivo desse trabalho consiste no projeto de FSSs através de redes neurais artificiais e outros algoritmos de computação natural selecionados, com aplicações na faixa de micro-ondas. A precisão dessa técnica é realizada experimentalmente e comparada com simulações efetuadas pelos softwares comerciais Ansoft Designer e Ansoft HFSS, utilizados na análise numérica do comportamento eletromagnético das FSSs através do Método dos Momentos (MoM) e do Método dos Elementos Finitos (FEM), respectivamente. Nesta tese um estudo bibliográfico em teoria de FSSs é realizado, bem como o estudo das redes neurais artificiais, algoritmos genéticos e outros algoritmos de otimização natural. Este estudo analisa também a solução da arquitetura de rede adequada aos projetos, algoritmos de treinamento, parâmetros dos algoritmos como número de neurônios nas camadas e quantidade de camadas das redes, bem como os parâmetros e funções adequadas para os algoritmos de otimização.