Universidade Federal do Rio Grande do Norte Natal, 15 de Janeiro de 2025

Resumo do Componente Curricular

Dados Gerais do Componente Curricular
Tipo do Componente Curricular: MÓDULO
Unidade Responsável: PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS CONTÁBEIS (16.00.39)
Código: PPGCCON-D309
Nome: APRENDIZADO DE MÁQUINA APLICADO A CONTABILIDADE E FINANÇAS
Carga Horária Teórica: 60 h.
Carga Horária Prática: 0 h.
Carga Horária de Ead: 0 h.
Carga Horária Total: 60 h.
Pré-Requisitos:
Co-Requisitos:
Equivalências:
Excluir da Avaliação Institucional: Não
Matriculável On-Line: Sim
Método de Avaliação: CONCEITO
Horário Flexível da Turma: Sim
Horário Flexível do Docente: Sim
Obrigatoriedade de Nota Final: Sim
Pode Criar Turma Sem Solicitação: Não
Necessita de Orientador: Não
Exige Horário: Sim
Permite CH Compartilhada: Não
Permite Múltiplas Aprovações: Não
Quantidade de Avaliações: 1
Ementa/Descrição: Programação, Mineração de Dados e Data Storytelling. Modelos supervisionados e não supervisionados. Introdução ao processamento de linguagem natural.
Referências: BIBLIOGRAFIA BÁSICA: Adams, R., Ragunathan, V., & Tumarkin, R. (2021). Death by committee? An analysis of corporate board (sub-) committees. Journal of Financial Economics, 141(3), 1119-1146, https://doi.org/10.1016/j.jfineco.2021.05.032 Bochkay, K., Brown, S.V., Leone, A.J. and Tucker, J.W. (2023). Textual Analysis in Accounting: What's Next?. Contemporary Accounting Research, 40, 765-805. https://doi.org/10.1111/1911-3846.12825 DeMiguel, V., Gil-Bazo, J., Nogales, F., Santos, A. (2023). Machine learning and fund characteristics help to select mutual funds with positive alpha. Journal of Financial Economics, 150(3). https://doi.org/10.1016/j.jfineco.2023.103737 Husmann, S., Shivarova, A., & Steinert, R. (2022). Company classification using machine learning. Expert Systems with Applications, 195. https://doi.org/10.1016/j.eswa.2022.116598 Koratamaddi, P., Wadhwani, K., Gupta, G., & Sanjeevi, S. (2021). Market sentiment-aware deep reinforcement learning approach for stock portfolio allocation. Engineering Science and Technology, an International Journal, 24(4), 848-859. https://doi.org/10.1016/j.jestch.2021.01.007 Liaras, E., Nerantzidis, M. & Alexandridis, A. (2024). Machine learning in accounting and finance research: a literature review. Review of Quantitative Finance and Accounting. https://doi.org/10.1007/s11156-024-01306-z Nazareth, N., & Reddy, Y. (2023). Financial applications of machine learning: A literature review. Expert Systems With Applications, 219. https://doi.org/10.1016/j.eswa.2023.119640 Ranta, M., Ylinen, M., & Järvenpää, M. (2022). Machine Learning in Management Accounting Research: Literature Review and Pathways for the Future. European Accounting Review, 32(3), 607–636. https://doi.org/10.1080/09638180.2022.2137221 Sutton, R., & Barto, A. (2020). Reinforcement Learning: an introduction. Versão digital da segunda edição disponível em: http://incompleteideas.net/book/RLbook2020.pdf Thewissen, J., Shrestha, P., Torsin , W., & Pastwa, A. (2022). Unpacking the black box of ICO white papers: A topic modeling approach. Journal of Corporate Finance, 75. https://doi.org/10.1016/j.jcorpfin.2022.102225 BIBLIOGRAFIA COMPLEMENTAR: Adams, R., Ragunathan, V., & Tumarkin, R. (2021). Death by committee? An analysis of corporate board (sub-) committees. Journal of Financial Economics, 141(3), 1119-1146, https://doi.org/10.1016/j.jfineco.2021.05.032 Amani, F., & Fadlalla, A. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58. https://doi.org/10.1016/j.accinf.2016.12.004 Farzamfar, A., Foroughi, P., Bahar, H., & Ng, L. (2024). Illuminating the murk: The effect of business complexity on voluntary disclosure. Journal of Corporate Finance, 87, https://doi.org/10.1016/j.jcorpfin.2024.102612 Gosselin, A.-M., Le Maux, J. and Smaili, N. (2021), Readability of Accounting Disclosures: A Comprehensive Review and Research Agenda. Accounting Perspectives, 20: 543-581. https://doi.org/10.1111/1911-3838.12275 Petridis, K, Tampakoudis, I., Drogalas, G., & Kiosses, N. (2022). A Support Vector Machine model for classification of efficiency: An application to M&A. Research in International Business and Finance, 61. https://doi.org/10.1016/j.ribaf.2022.101633.

SIGAA | Superintendência de Tecnologia da Informação - (84) 3342 2210 | Copyright © 2006-2025 - UFRN - sigaa01-producao.info.ufrn.br.sigaa01-producao v4.15.13