Nós usamos cookies para melhorar sua experiência de navegação no portal. Ao utilizar o SIGAA, você concorda com a polí­tica de monitoramento de cookies. Para ter mais informações sobre como isso é feito e como remover, acesse a Polí­tica de cookies. Para saber como a UFRN trata os dados, acesse a Política de Privacidade. Se você concorda, clique em Ciente.
Universidade Federal do Rio Grande do Norte Natal, 02 de Abril de 2025

Resumo do Componente Curricular

Dados Gerais do Componente Curricular
Tipo do Componente Curricular: MÓDULO
Unidade Responsável: PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMÁTICA E EVOLUÇÃO (17.64)
Código: PSE1029
Nome: FILOGEOGRAFIA ESTATÍSTICA E ADAPTAÇÃO AMBIENTAL
Carga Horária Teórica: 45 h.
Carga Horária Prática: 45 h.
Carga Horária de Ead: 0 h.
Carga Horária Total: 90 h.
Pré-Requisitos:
Co-Requisitos:
Equivalências:
Excluir da Avaliação Institucional: Não
Matriculável On-Line: Sim
Método de Avaliação: CONCEITO
Horário Flexível da Turma: Sim
Horário Flexível do Docente: Sim
Obrigatoriedade de Nota Final: Sim
Pode Criar Turma Sem Solicitação: Não
Necessita de Orientador: Não
Exige Horário: Sim
Permite CH Compartilhada: Não
Permite Múltiplas Aprovações: Não
Quantidade de Avaliações: 1
Ementa/Descrição: Introduzir conceitos teóricos e conduzir atividades práticas de análises de dados em filogeografia estatística e adaptação ambiental baseadas na teoria coalescente, de forma que os alunos sejam capazes de aplicar as análises em seus próprios conjuntos de dados e projetos de pesquisa. O curso será estruturado em aproximadamente 50% de aulas teóricas e 50% de atividades práticas nas quais apresentaremos tutoriais com demonstrações de programas de análises. O curso cobrirá os tópicos: noções de bioinformática, teoria coalescente, inferências filogenéticas, reconstruções espaço-temporais/geofilogeografias, estrutura populacional, estimativas de tempos de divergência, delimitação de espécies, seleção de modelos de divergência, filogeografia comparada e adaptação ambiental. Na tentativa de fornecer um amplo espectro de utilizações em casos reais, os tutoriais utilizarão tanto dados moleculares tradicionais (Sanger-sequencing) quanto de sequenciamento de última geração (Next-Generation Sequencing). As aulas fornecerão o embasamento teórico básico para as práticas e tutoriais de implementação das análises, mas não serão exaustivas em cobrir toda a teoria.
Referências: Ahrens, C. W., P. D. Rymer, A. Stow, J. Bragg, S. Dillon, K. D. L. Umbers, and R. Y. Dudaniec. 2018. The search for loci under selection: trends, biases and progress. Molecular Ecology 27:1342-1356. Alvarado-Serrano, D.F. & Knowles, L.L. (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Molecular Ecology Resources, 14, 233-248. Avise, J.C. (2009) Phylogeography: retrospect and prospect. Journal of Biogeography, 36, 3-15. Barido-Sottani, J., V. Bošková, L. D. Plessis, D. Kühnert, C. Magnus, V. Mitov, N. F. Müller, J. PečErska, D. A. Rasmussen, C. Zhang, A. J. Drummond, T. A. Heath, O. G. Pybus, T. G. Vaughan, and T. Stadler. 2017. Taming the BEAST—a community teaching material resource for BEAST 2. Systematic Biology, 67,170-174. Beichman, A. C., E. Huerta-Sanchez, and K. R. Lohmueller. 2018. Using genomic data to infer historic population dynamics of nonmodel organisms. Annual Review of Ecology, Evolution and Systematics 49:433-456. Bouckaert, R.R., Heled, J., Kuhnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 10, e1003537. Bouckaert, R., T. G. Vaughan, J. Barido-Sottani, S. Duchêne, M. Fourment, A. Gavryushkina, J. Heled, G. Jones, D. Kühnert, N. De Maio, M. Matschiner, F. K. Mendes, N. F. Müller, H. A. Ogilvie, L. du Plessis, A. Popinga, A. Rambaut, D. Rasmussen, I. Siveroni, M. A. Suchard, C.-H. Wu, D. Xie, C. Zhang, T. Stadler, and A. J. Drummond. 2019. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15:e1006650. Bouckaert, R. 2016. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ 4:e2406. Bravo, G. A., A. Antonelli, C. D. Bacon, K. Bartoszek, M. Blom, S. Huynh, G. Jones, L. L. Knowles, S. Lamichhaney, T. Marcussen, H. Morlon, L. Nakhleh, B. Oxelman, B. Pfeil, A. Schliep, N. Wahlberg, F. Werneck, J. Wiedenhoeft, S. Willows-Munro, and S. V. Edwards. 2019. Embracing heterogeneity: coalescing the Tree of Life and the future of phylogenomics. PeerJ 7:e6399. https://peerj.com/articles/6399/ Bromham, L., S. Duchêne, X. Hua, A. M. Ritchie, D. A. Duchêne, and S. Y. W. Ho. 2018. Bayesian molecular dating: opening up the black box. Biological Reviews 93:1165-1191. Camargo, A., Morando, M., Avila, L.J. & Sites Jr., J.W. (2012) Species delimitation using ABC: accounting for speciation with gene flow in lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution, 66, 2834–2849. Camargo, A., Avila, L.J., Morando, M. & Sites Jr., J.W. (2012) Accuracy and precision of species trees: effects of locus, individual, and base pair sampling on inference of species trees in lizards of the Liolaemus darwinii group (Squamata, Liolaemidae). Systematic Biology, 61, 272-288. Carey, M. A., and J. A. Papin. 2018. Ten simple rules for biologists learning to program. PLoS Computational Biology 14:e1005871. Carstens, B.C., Brennan, R.S., Chua, V., Duffie, C.V., Harvey, M.G., Koch, R.A., Mcmahan, C.D., Nelson, B.J., Newman, C.R., Satler, J.D., Seeholzer, G., Posbic, K., Tank, D.C. & Sullivan, J. (2013) Model selection as a tool for phylogeographic inference: an example from the willow Salix melanopsis. Molecular Ecology, 22, 4014-4028. Carstens, B.C., Pelletier, T.A., Reid, N.M. & Satler, J.D. (2013) How to fail at species delimitation. Molecular Ecology, 22, 4369-4383. Degnan, J.H. & Rosenberg, N.A. (2009) Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24, 332-340. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 1-8. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969-1973. Drummond, A.J. & Bouckaert, R.R. (In Press) Bayesian evolutionary analysis with BEAST 2.0. Eaton, D.A., 2014. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinf. 30, 1844–1849. Eaton, D.A.R., Overcast, I., 2020. ipyrad: Interactive assembly and analysis of RADseq datasets Bioinfo, btz966.Edwards, S.V. & Beerli, P. (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution, 54, 1839-1854. Flouri, T., Jiao, X., Rannala, B., Yang, Z. (2020). A Bayesian Implementation of the Multispecies Coalescent Model with Introgression for Phylogenomic Analysis. Molecular Biology and Evolution, 37, 1211-1223. Forester, B. R., J. R. Lasky, H. H. Wagner, and D. L. Urban. 2018. Comparing methods for detecting multilocus adaptation with multivariate genotype–environment associations. Molecular Ecology 27:2215-2233. Frichot, E., S. D. Schoville, G. Bouchard, and O. François. 2013. Testing for associations between loci and environmental gradients using latent factor mixed models. Molecular Biology and Evolution 30:1687-1699. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G., & François, O. 2014. Fast and efficient estimation of individual ancestry coefficients. Genetics, 196, 973–983. Frichot, E., and O. François. 2015. LEA: An R package for landscape and ecological association studies. Methods in Ecology and Evolution 6:925-929. Garrick, R.C., Bonatelli, I.A.S., Hyseni, C., Morales, A., Pelletier, T.A., Perez, M.F., Rice, E., Satler, J.D., Symula, R.E., Thomé, M.T.C. & Carstens, B. (2015) The evolution of phylogeographic data sets. Molecular Ecology, 24, 1164-1171. Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Systematic Biology, 61, 1-15. Grummer, J.A., Bryson Jr., R.W. & Reeder, T.W. (2014) Species delimitation Using Bayes Factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology, 63, 119-133. Heath, T.A. (2012) A hierarchical Bayesian model for calibrating estimates of species divergence times. Systematic Biology, 61, 793-809. Heled, J. & Drummond, A.J. (2012) Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Systematic Biology, 61, 138-149. Heller, R., L. Chikhi, and H. R. Siegismund. 2013. The confounding effect of population structure on Bayesian Skyline Plot inferences of demographic history. PLoS One 8:e62992. Hickerson, M.J., Carstens, B.C., Cavender-Bares, J., Crandall, K.A., Graham, C.H., Johnson, J.B., Rissler, L., Victoriano, P.F. & Yoder, A.D. (2011) Phylogeography’s past, present, and future: 10 years after Avise, 2000. Molecular Phylogenetics and Evolution, 54, 291-301. Hickerson, M.J., Stahl, E.A. & Takebayashi, N. (2007) msBayes: pipeline for testing comparative phylogeographic histories using hierarchical approximate Bayesian computation. BMC Bioinformatics, 8, 268. Ho, S. Y. W., and S. Duchêne. 2014. Molecular-clock methods for estimating evolutionary rates and timescales. Molecular Ecology 23:5947-5965. Huang, W., Takebayashi, N., Qi, Y. & Hickerson, M.J. (2011) MTML-msBayes: Approximate Bayesian comparative phylogeographic inference from multiple taxa and multiple loci with rate heterogeneity. BMC Bioinformatics, 12 Hudson, R.R. (2002) Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics, 18, 337-338. Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler, and L. S. Jermiin. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14:587-589. Knowles, L.L. & Maddison, W.P. (2002) Statistical phylogeography. Molecular Ecology, 11, 2623-2635. Leaché, A.D., Fujita, M.K., Minin, V.N. & Bouckaert, R.R. (2014) Species delimitation using genome-wide SNP data. Systematic Biology, 63, 534-542. Leigh, J. W., and D. Bryant. 2015. popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6:1110-1116. Lemey, P., Rambaut, A., Drummond, A.J. & Suchard, M.A. (2009) Bayesian phylogeography finds its roots. PLOS Computational Biology, 5, e1000520. Lemey, P., Rambaut, A., Welch, J.J. & Suchard, M.A. (2010) Phylogeography takes a relaxed random walk in continuous space and time. Molecular Biology and Evolution, 27, 1877-1885. Liu, X., and Y.-X. Fu. 2015. Exploring population size changes using SNP frequency spectra. Nature Genetics 47:555-559. Maddison, W.P. (1997) Gene trees in species tree. Systematic Biology, 46, 523-536. Maddison, W.P. & Knowles, L.L. (2006) Inferring phylogeny despite incomplete lineage sorting. Systematic Biology, 55, 21-30. Marchi, N., F. Schlichta, and L. Excoffier. 2021. Demographic inference. Current Biology 31:R276-R279. Marske, K.A., Rahbek, C. & Nogués-Bravo, D. (2013) Phylogeography: spanning the ecology-evolution continuum. Ecography, 36, 001-013. Nylinder, S., Lemey, P., de Bruyn, M., Suchard, M.A., Pfeil, B.E., Walsh, N. & Anderberg, A.A. (2014) On the biogeography of Centipeda: a species-tree diffusion approach. Systematic Biology, 63, 178-191. Olave, M., Sola, E. & Knowles, L.L. (2014) Upstream analyses create problems with DNA-based species delimitation. Systematic Biology, 63, 263-271. Papadopoulou, A. & Knowles, L.L. (2016) Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. Proceedings of the National Academy of Sciences of the United States of America, 113, 8018-8024. Paradis, E., T. Gosselin, J. Goudet, T. Jombart, and K. Schliep. 2017. Linking genomics and population genetics with R. Molecular Ecology Resources 17:54-66. Paradis, E. 2018. Analysis of haplotype networks: The randomized minimum spanning tree method. Methods in Ecology and Evolution 9:1308-1317. Petkova, D., Novembre, J., & Stephens, M. (2016). Visualizing spatial population structure with estimated effective migration surfaces. Nature Genetics, 48(1), 94–100. https ://doi.org/10.1038/ng.3464 Porras-Hurtado, L., Ruiz, Y., Santos, C., Phillips, C., Carracedo, A. & Lareu, M.V. (2013) An overview of STRUCTURE: applications, parameter settings, and supporting software. Frontiers in Genetics, 4, 1-13 Rambaut, A., Suchard, M.A. & Drummond, A.J. (2014) Tracer v1.6, Available from http://beast.bio.ed.ac.uk/Tracer. Rannala, B. & Yang, Z. (2013) Improved reversible jump algorithms for Bayesian species delimitation. Genetics, 194, 245-253. Rellstab, C., F. Gugerli, A. J. Eckert, A. M. Hancock, and R. Holderegger. 2015. A practical guide to environmental association analysis in landscape genomics. Molecular Ecology 24:4348-4370. Rosenberg, N.A. & Nordborg, M. (2002) Genealogical trees, coalescent theory and the analysis of genetic polymorphisms. Nature Reviews Genetics, 3, 380-390. Savolainen, O., M. Lascoux, and J. Merila. 2013.Ecological genomics of local adaptation. Nature Reviews Genetics 14:807-820. Schraiber, J. G., and J. M. Akey. 2015. Methods and models for unravelling human evolutionary history. Nature Reviews Genetics 16:727-740. Sousa, V., and J. Hey. 2013. Understanding the origin of species with genome-scale data: modelling gene flow. Nature Reviews Genetics 14:404-414. Sukumaran, J. & Knowles, L.L. (2017) Multispecies coalescent delimits structure, not species. Proceedings of the National Academy of Sciences of the United States of America, 14, 1607–1612. Tsai, Y.-H.E. & Carstens, B. (2013) Assessing model fit in phylogeographical investigations: an example from the North American sandbar willow Salix melanopsis. Journal of Biogeography, 40 Yang, Z. & Rannala, B. (2010) Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences of the United States of America, 107, 9264-9269. Yang, Z. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology, 61, 854-865.

SIGAA | Superintendência de Tecnologia da Informação - (84) 3342 2210 | Copyright © 2006-2025 - UFRN - sigaa10-producao.info.ufrn.br.sigaa10-producao v4.16.17